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A Theoretical Study of the High-Frequency Performance

of a SchottkY-Barrier Field-Effect Transistor Fabricated

on a High-ResistivitY Substrate
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Abstract—The short-circuit admittance parameters for a sificon

Schottky-barrier field-effect transistor (SBFET) fabricated on a

high-resistivity substrate are calculated from first principles ignoring

the effects of minority carriers. The calculations show the maximum

frequency of oscillation for a device with a l-pm gate to be 17.9 GHz,

neglecting the parasitic associated with the contact metallizations,

and 14.7 GHz when the parasitic are included.
In order to describe the dynamic behavior of the device, the static

properties must first be obtained. The simultaneous solution of

Poisson’s equation and the continuity equation, both in two dimen-

sions, gives the static charge and potential distribution in the device.

The effects of a field-dependent mobility are included in the con-

tiriuity equation. Using the results of static two-dimensional solu-

tions, a one-dimensional device model is developed that permits the

dynamic device behavior to be described by a one-dimensional

linear ordinary differential equation. By solving this equation under
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appropriate boundary conditions, the device y parameters are found

as functions of frequency. Calculated results are shown to be in good
agreement with published experimental data.

I. INTRODUCTION

THE DEMONSTRATED high-frequency capabilities

of field-effect transistors [1] indicate that they will

have important applications in microwave systems.

In this paper we present a method for calculating the y

parameters as a function of frequency for a silicon

Schottky-barrier field-effect transistor (SBFET) [2].

The results of these calculations are valid up to and beyond

the maximum frequency of oscillation for a given device,

so that the method may be used to optimize the high-

frequency response of an SBFET. The theoretical cal-

culations presented are compared with experimental data
published in the literature and are shown to be in good

agreement.

In order to obtain the desired y parameters, we first

solve simultaneously the continuity equation and Poisson’s

equation, both in two dimensions, in order to find the
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static charge and potential distribution in a two-dimen-

sional model of the device. Using the results of these static

solutions, a one-dimensional model is completely specified

that permits the dynamic device behavior to be described

by a one-dimensional linear ordinary differential equation.

It is important to note that there are no arbitrary con-

stants in this analysis. By solving this equation under

appropriate boundary conditions, the device y parameters

are found as functions of frequency. In both the static

and dynamic cases we have explicitly included the de-

pendence of the electron mobility on the electric field

existing in the device.

II. STATIC DESCRIPTION OF AN SBFET

Before the small-signal behavior of an SBFET can be

investigated we must find the static charge and potential

distribution in the device. A cross section of the device

to be studied showing pertinent dimensions and impurity

concentrations is shown in Fig. 1. We assume the gate

length (perpendicular to the plane of Fig. 1) to be 400 Km.

The two-dimensional continuity equations for holes and

electrons together with the two-dimensional Poisson

equation govern the behavior of the two-dimensional

model of the device [3]. Because the SBFET is basically

a majority carrier device, we have chosen to ignore

minority carriers [4].

We formulate the problem in terms of the electrostatic
(V) and the quasi-Fermi level for electrons (~). The re-

sulting equations are

(2)

(3)

(4)

Because of the high fields that are expected to occur in

the channel, the field-dependent mobility is included

using the empirical relation due to Jaggi [5]:

SOURCE GATE CRAIN

EPITAXAL
LAYER—— —. _

ND = 10’3 cm-’

I J-x

Fig. 1. Cross section of an SBFET fabricated on a high-resistivity
substrate showing the dimensions and impurity concentrations.

.=2,0/{l+[l+(W)~} (5)

in which p. is the low field mobility, v, the electron scatter-

ing limited velocity, and E the magnitude of the electric

field. The mobility is taken to be a scalar depending only

upon the magnitude of the electric field.

The set of equations (1 )– (5) was solved subject to ap-

propriate boundary conditions using finite dlff erence

methods and under-relaxation. Although the formulation

of the problem is different, the device characteristics ob-

tained using the static two-dimensional calculations were

quite similar to those-reported by Reiser [4], [6], Kennedy

and O’Brien [3], and Kim and Yang [7]. In the interests

of brevit y these results will not be shown. We do, however,

make extensive use of them in deriving the parameters of

the one-dimensional ac model.

III. DYNAMIC DESCRIPTION OF AN SBFET

A. Equations Govem&g the One-Dimensimal AC Model

In principle we could assume harmonic variation of the

appropriate variables and solve the set of equations ( l)–

(5) to obtain the time-dependent clectrostat~c potential

and quasi-Fermi level and from these the ac currents and

voltages. These voltages and currents could then be used

to obtain the u parameters. The resulting ac equations

would be linear and, therefore, straightforward to solve.

Even with a sparse grid, however, the calculation time

would be very great, particularly with the realization that

we would need to calculate the complex y parameters for

20 or 30 frequencies.

For thk reason, we have chosen to try to develop a one-

dimcnsional model of the ac behavior of the SBFET.

In this section we will develop the equations describing

the model and in Section III-B the model parameters will

be deduced. The parameters of the one-dimensional model

will be derived by averaging certain quantities obtained

from the two-dimensional static solution.

The ac model is based on the one-dimensional continuity

equation and, as in previous models [9}[11 ], a knowledge

of the channel to gate capacitance as a function of the

dimension parallel to the gate. The one-dimensional

current flow equation is given in (6) in terms of separate

drift and diffusion terms. The one-dimensional continuity

equation is given in (7), where we have ignored the

generation and recombination terms

(6)

dI dQ

z=–%”
(7)

In (6) and (7), Q and N are the one-dimensional charge

per unit length and the mobility, respectively. These are
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the one-dimensional counterparts of the two-dimensional

quantities discussed in Section II. The precise way

in which the one-dimensional quantities are calculated

will be discussed in Section III-B. V is the voltage along

the one-dimensional model and I is the current flowing

through it. The sign convention used makes both Q and p

negative. Substituting (6) into (7) gives

We now consider Q, ~, and V to be the sum of a time-in-

in which v is the total electron velocity and is equal to the

product of the total electric field and the mobility as given

in (5). Substituting (9) and (10) into (8) and keeping

only the time-independent terms, (15) results:

Substituting (9) -( 11) into (8) and keeping only the

linear time-dependent terms, we have, using (12) for

the relationship between ac charge and ac voltage and

(14) for the ac mobility, the following equation in ~:

dependent term and a time-dependent term using har-

monic time variation:

The bars over the steady-state values (those with “O”

subscripts) are intended to dktinguish them from their

two-dimensional counterparts. Quantities with the tilde

over them are the magnitudes of the time-varying com-

ponents. The ac charge o is related to the ac voltage 17

through the channel to gate capacitance C as described by

the equation
Q = c~. (12)

C will be determined later by reference to the results of the

static solution.

The ac mobility can be found by expanding the mobility

as a function of the total electric field in a Taylor series

about the time average electric field:

where f(fi) is the empirical expression due to Jaggi.

Recognizing that peiw’ is equal to the second term in the
expansion in (13) where f is given by (5), we obtain

‘=[%’19$2’1 (14)

The solutions to (16), subject to boundary conditions

appropriate for YH and YZ1, or for Yn and yn, give the aC

voltage as a function of x in the one-dimensional model.

In order to find the common gate y parameters, the ac
current is also needed. By substituting (9)–( 11) into (6)

and keeping only the linear ac terms, an expression can be

found relating the ac current to the ac voltage. Thus

knowing ~ from (16), ~ can be found from (17):

+4%”0)(%)-’::0“7)
The solution of (16) in conjunction with (17) gives the

ac current and voltage from which a complete set of

common gate short-circuit admittance parameters at a

given frequency can be calculated. The common source y

parameters can then be evaluated by way of a simple

transformation.

B. Method of Evaluating Coeflc~ents of (16)

In order to solve (16) the values of 00, ~VO/dx, PO, and

C must be known as functions of x. The first three are the

one-dimensional analogs of the two-dimensional values of

charge, electric field, and mobility computed in the static
case. The capacitance C will be found, as shown later in

thk section, using the dlff erence of two static solutions.

There is no way to uniquely calculate the first three

quantities, so we have defined them in what appears to be
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an intuitively reasonable way. This is described in the

following paragraphs.

In the region between the source contact and the edge

of the gate the current flow is rather uniform in the

epitaxial layer. Thus the two-dimensional steady-state

quantities QO, WO/ilx, and pOhave nearly constant values

there so that any averaging scheme will be satisfactory.

Similar comments apply near the drain contact. It is only

in the neighborhood of the gate that we must be careful

since it is this region that is responsible for the active

behavior of the device and since these parameters tend to

vary ra,pidly in this region.

Since we are interested in the ac behavior of the device

it seems most reasonable to be more concerned with those

values of Qo, dVo/ax, and PO in the region where the

principal portion of the ac current flows. For this reason

we have chosen to average 8 Vo/dx and p. in the y direction

using the ac current as a weighting factor in order to find

the one-dimensional analogs d~o/&z and PO. (QO will be

determined later using the continuity equation (15) and

the known values of ~~o/dx and DO.) In equation form this

implies

(20)

In ( 18)–(20) the subscript ij refers to column i (per-

pendicular to the gate) and row j (parallel to the gate) in

the grid used to find the static solution. The summations

are extended over the m rows of that same grid. hvii k a
grid spacing in the y direction at column j and row i.

Jacij k the ac current density in the limit of zero frequency

at column i and row j. J ~.t~is obtained by solving (1 )–
(5) twice with boundary conditions on the gate that

cliff er by a few millivolts. By subtracting the current

densities obtained from the two static solutions, the ac

current densities are obtained as a function of x and y.

Since the principal portion of the ac current is found to

flow near the edge of the depletion region in the epitaxial

layer, the use of J.Cij as the weighting function results in

average values that are most strongly influenced by that

region of the device. The mobility ~Oij is obtained by

calculating the magnitude of the vector electric field at

i, ~ and using (5) to find the mobility. In this way, we

have included the effect of the y component of electric

field on the x component of the electron velocity.

@o re~ains to be found. Having the one-dimensional

POand dVO/6’x it is possible to calculate 00. We know from

(7) that at de the channel current is continuous. Equa-

tion (15) can be interpreted as a second-order linear

ordinary differential equation for Q. involving PO and

d~O/c3x. PO and a~O/8x are known from the two-dimens-

ional solution by using the weighting functions given in

(18)–(20). We also know that in the ohmic region, at

the source and drain contacts, diffusion currents are not

important. The charge per unit length ~. at the source

and drain contacts is then given by

(21)

(22)

Equations (21) and (22) are then used as boundary con-

ditions for (15). The solution of (15) gives the static

charge per unit length in the one-dimensional model as a

function of x. Plots of PO, d~O/dx, and ~. are shown in

Figs. 2, 3, and 4 and are for boundary conditions of VD~ =
5.00 V and VGS = O V.

Equation (16) also involves the capacitance per unit

length C between the channel and the gate. This is found

by obtaining a static solution with a boundary condition

of 0.0 V on the gate and a second static solution with a

boundary condition of –0.060 V on the gate. In both

cases the source has a potential of 0.0 V. By integrating

the mobile charge densities over a given column for both

solutions and subtracting the two values, the channel to

gate capacitance at column i is found to be

~i=Q’lo– Qdo”060
0.060

F/m, (23)

In addition to the capacitance due to mobile charge in the

channel we must add an additional term that gives the

geometrical capacitance between the channel and ground.

This is a parallel-plate capacitance determined using

the substrate thickness as the plate spacing. In the region

of the depletion layer the geometrical capacitance term is

negligible, but in the region outside the depletion region

it is the total capacitance. A plot of the total capacitance

as a function of x is shown in Fig. 5 for VD8 = 5.00 V.

C. Substrate Efect

The method used to find Do and d~O/dx selects values

corresponding to the active region in the epitaxial layer

but does not include the effects of the substrate. As sug-

gested by Reiser [4], the substrate acts as a resistor
between source and drain.

This resistor is responsible for the large values of the

common gate yzz and y12when compared to a p-n junction

FET with two gates and a line of symmetry parallel to the

gate through the center of the channel. In order to include

the substrate effects in our one-dimensional model, we

have explicitly included an admittance between the source

and drain of 2.5 X 10–3 mho. This value was obtained

from two solutions of the static two-dimensional problem

with slightly cliff erent boundary conditions on the drain.
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Fig. 2. Mobility as a function of zforthe one-dimensional model
with VGS = 0.0 V and VD8 = 5.0 V.
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Fig. 3. Magnitude of the electric field as a function of x for the
one-dimensional model with VG.S = 0.0 V and VDS = 5.0 V.
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Fig. 4. Mobile charge density as a function of x for the one-dimen-
sional model with VGS = 0.0 V and VDS = 5.0 V.

D. Numerical Method Used to Solve (15) and (16)

Both (15) and (16) are linear second-order ordinary

differential equations with nonconstant coefficients sub-

ject to fixed boundary conditions at two points. Because

l--SOURCE GATE

,~.9 I

Fig. 5. Capacitance between the gate and channel as a function
of x for the one-dmensional model with V~S = 0.0 V and VDS =
5.0 v.

DRAIN

o 4 8 12 1618 22 26

x Ml CRONS

we know the values of the coefficients of (15) and (16)

only at dkcrete points and because of the complexity of

these equations, solutions were found using numerical

methods.

The derivatives in (15) and (16) are replaced by finite

difference approximations accurate to order h2 resulting

in a set of linear equations of the form

Cpa~ + A.a, + BpCSE = 0, 2<p S7n (24)

in which CP, Ap, and Bp are constant, aP is the desired

variable value at a point, and cw and a~ are its east and

west neighbors, respectively. The set of equations (24)

is a tridiagonal system, the solution to which may be

found using an efficient algorithm given by Keller [12].

Given the two-dimensional static solutions, a Fortran

IV program was written for an IIW 635 machine that

will solve for the y parameters at 110 frequencies in” O.1-h

processor time. This requires the solution of (15) and

220 solutions of (16) with 110 values of the frequency and

2 sets of boundary conditions for each value of frequency.

Due to the large gradients of PO, ~~O/~x, and C near

the drain end of the gate as shown in Figs. 2, 3, and 5, a

grid spacing smaller than that used in the static case was

required in order to solve (16). The solution to (16) was

checked at zero frequency by calculating the current at

each grid point. Because no displacement currents flow at
zero frequency, the current should be constant throughout

the channel. In order to obtain current continuity, the

grid spacing was reduced ,using a fourth-order Lagrange

interpolation for points that do not coincide with the

columns of the two-dimensional grid. In this fashion

current continuity was achieved.
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E. Results of theAC A’olut&m

The common gate admittance parameters described in

the analysis above were converted to common source y

parameters and are shown as functions of frequency in

Figs. 6--9 using Vm z 0.0 V and ~Ds = 5.0 V. The

maximum available gain (MAG) [or the maximum

stable gain (MSG) ] and the stability factor computed

from these parameters are shown in Fig. 10.

In order to evaluate the validity of the model that has

been used, it is important to compare the calculated re-

sults with experimental measurements. The device whose

properties we are trying to calculate (Fig. 1) has dimen-

sions and impurity concentrations comparable with the

device reported by Wolf [1].
A comparison of his results and our own is complicated

by the presence of parasitic elements in the experimental

device. The experimental device had two relatively large

Schottky-barrier pads for the gate contacts that, in

effect, add a resistor on the order of 400 Q in parallel with

the gate [1]. This has the effect of increasing the real

part of yll and reducing the MAG of the experimental

device. Furthermore, as shown in Fig. 1, the theoretical

model assumes that heavily doped regions, as could be
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yl,xlnz : ~Q ~;:: (P.wou,wwi
1
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2 4 6 8 10 12 14 16 18 20FAEO.WIZ

Fig. 6. ~11~ in mhos as computed using the one-dimensional model
with Va,g = 0.0 V and V~S = 5.0 V and the experimental results
of wolf [1].
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Fig. 7. yzls in mhos as computed using the one-dimensional model
with VG~ = 0.0 V and V~S = 5.0 V and the experimental results
of wolf [1].
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Fig. 9. y2w in mhos as computed using the onedimensional model
with VG8 = 0.0 V and V~~ = 5.0 V and the experimental results
of wolf [1].
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Fig. 10. Maximum stable gain (MSG), maximum available gain
(MAG), and stability factor k as computed using the onedimen-
sional model with VG~ = 0.0 V, V~~ = 5.0 V, and the experi-
ment al results of Wolf [1].

obtained using ion implantation, exist under the source

and drain contact metallizations to reduce the resistance

in series with these contacts. The experimental device,

however, had source and drain contacts directly on the

epitaxial material. Finally, it is very difficult to measure

accurately the physical dimensions and impurity con-
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centrations and thus another uncertainty is introduced

into the interpretation of the experimental data.

In order, therefore, to compare the experimental and

theoretical results, wehave triedto take these factors into

account as well as we can. We have included in our cal-

culated y parameters, shown in Figs. 6-10, both a re-

sistance in series with the gate (RG) equal to one-third

of the gate metallization resistance and the geometrical

capacitance between source and gate (CGs) and between

the gate and drain (CGD) due to the contact metallizations

[13]. The values used for these quantities are RG = 3.3 Q
CGS = 0.045 pF, and CGD = 0.033 pF. A detailed dis-

tributed analysis shows that these approximations are

valid for frequency–gate length products of less than

2 X 106 Hz .m [8]. Since the experimental device re-

ported by Wolf [1] has, in effect, four 100-Mm-long gates

in parallel, we are justified in making direct comparisons

below 20 GHz.

It is apparent from Fig. 6 that the calculated value of

the real part of y,, is slightly less than the experimental

value. A large portion of this discrepancy is believed due

to the gate pad parasitic in the experimental device.

Figs. 7 and 8 show good agreement between calculated

and measured values of YIZand y2.1.The difference between

calculated and measured values of the real ‘part of YZZ

as shown in Fig. 9 is not nearly as significant as it appears

due to the small magnitude of y,,. The error could be

attributed to a deviation from a step junction at the sub-

strate epitaxial layer boundary as assumed in our two-

dimensional static model.

The MSG, the MAG, and the stability factor k are

shown in Fig. 10 together with the ewerimental results

of Wolf [1]. Calculated results show that the stability

factor is less than 1 below 5 GHz so that the device is

potentially unstable in this region. We have, therefore,

shown the MS G in this region. The agreement between

experiment and calculation is apparent. The maximum

frequency of oscillation is reduced from 17.9 GHz to

14.7 GHz due to the parasitic associated with the 400-pr-

olong contact metallizations.

IV. SUMMARY

The short-circuit admittance parameters of a Schottky-

barrier field-effect transistor have been calculated and

com~ared with the ex~erim ental characteristics of a

189

similar device. Taking into account the parasitic in the

experimental structure the agreement between experi-

ment and theory is good. It is believed that the model

developed to describe the high-frequency performance of

the device will provide the device designer with the means

to optimize this type of structure for use in microwave

circuits.
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