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A Theoretical Study of the High-Frequency Performance
of a Schottky-Barrier Field-Effect Transistor Fabricated
on a High-Resistivity Substrate

GARY D. ALLEY,

Abstract—The short-circuit admittance parameters for a silicon
Schottky-barrier field-effect transistor (SBFET) fabricated on a
high-resistivity substrate are calculated from first principles ignoring
the effects of minority carriers. The calculations show the maximum
frequency of oscillation for a device with a 1-um gate to be 17.9 GHz,
neglecting the parasitics associated with the contact metallizations,
and 14.7 GHz when the parasitics are included.

In order to describe the dynamic behavior of the device, the static
properties must first be obtained. The simultaneous solution of
Poisson’s equation and the continuity equation, both in two dimen-
sions, gives the static charge and potential distribution in the device.
The effects of a field-dependent mobility are included in the con-
tinuity equation. Using the results of static two-dimensional solu-
tions, a one-dimensional device model is developed that permits the
dynamic device behavior to be described by a one-dimensional
linear ordinary differential equation. By solving this equation under
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appropriate boundary conditions, the device y parameters are found
as functions of frequency. Calculated results are shown to be in good
agreement with published experimental data.

I. INTRODUCTION

HE DEMONSTRATED high-frequency capabilities
of field-effect transistors [17] indicate that they will
have important applications in microwave systems.
In this paper we present a method for calculating the y
parameters as a function of frequency for a silicon
Schottky-barrier field-effect transistor (SBFET) [2].
The results of these calculations are valid up to and beyond
the maximum frequency of oscillation for a given device,
so that the method may be used to optimize the high-
frequency response of an SBFET. The theoretical cal-
culations presented are compared with experimental data
published in the literature and are shown to be in good
agreement.
In order to obtain the desired y parameters, we first
solve simultaneously the continuity equation and Poisson’s
equation, both in two dimensions, in order to find the
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static charge and potential distribution in a two-dimen-
sional model of the device. Using the results of these static
solutions, a one-dimensional model is completely specified
that permits the dynamic device behavior to be described
by a one-dimensional linear ordinary differential equation.
It is important to note that there are no arbitrary con-
stants in this analysis. By solving this equation under
appropriate boundary conditions, the device y parameters
are found as functions of frequency. In both the static
and dynamic cases we have explicitly included the de-
pendence of the electron mobility on the electric field
existing in the device.

I1. StaTic DEscripTioON oF AN SBFET

Before the small-signal behavior of an SBFET can be
investigated we must find the static charge and potential
distribution in the device. A cross section of the device
to be studied showing pertinent dimensions and impurity
concentrations is shown in Fig. 1. We assume the gate
length (perpendicular to the plane of Fig. 1) to be 400 pm.

The two-dimensional continuity equations for holes and
electrons together with the two-dimensional Poisson
equation govern the behavior of the two-dimensional
model of the device [3]. Because the SBFET is basically
a majority carrier device, we have chosen to ignore
minority carriers [4].

We formulate the problem in terms of the electrostatic
(¥) and the quasi-Fermi level for electrons (¢). The re-
sulting equations are

j=—quﬂ%%i—wn%j=fﬁ+hj (1)
%}‘;+3—Zﬁ=1€g<z\fd—n> 3)
n = ner¥—9, =L (4)

kT’

Because of the high fields that are expected to occur in
the channel, the field-dependent mobility is included
using the empirical relation due to Jaggi [5]:
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Fig. 1. Cross section of an SBFET fabricated on a high-resistivity
substrate showing the dimensions and impurity concentrations.
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in which y, is the low field mobility, v, the electron scatter-
ing limited velocity, and E the magnitude of the electrie
field. The mobility is taken to be a scalar depending only
upon the magnitude of the electric field.

The set of equations (1)—(5) was solved subject to ap-
propriate boundary conditions using finite difference
methods and under-relaxation. Although the formulation
of the problem is different, the device characteristics ob-
tained using the static two-dimensional calculations were
quite similar to thosereported by Reiser [4 ], [6], Kennedy
and O’Brien [3], and Kim and Yang [7]. In the interests
of brevity these results will not be shown. We do, however,
make extensive use of them in deriving the parameters of
the one-dimensional ac¢ model.

I1I. Dynamic DEscriprioN oF AN SBFET

A. Equations Governing the One-Dimensional AC M odel

In principle we could assume harmonic variation of the
appropriate variables and solve the set of equations (1)—
(5) to obtain the time-dependent clectrostatic potential
and quasi-Fermi level and from these the ac currents and
voltages. These voltages and currents could then be used
to obtain the y parameters. The resulting ac equations
would be linear and, therefore, straightforward to solve.
Even with a sparse grid, however, the calculation time
would be very great, particularly with the realization that
we would need to calculate the complex y parameters for
20 or 30 frequencies.

For this reason, we have chosen to try to develop a one-
dimensional model of the ac behavior of the SBFET.
In this section we will develop the equations deseribing
the model and in Section ITI-B the model parameters will
be deduced. The parameters of the one-dimensional model
will be derived by averaging certain quantities obtained
from the two-dimensional static solution.

The ac model is based on the one-dimensional continuity
equation and, as in previous models [9]-[117, a knowledge
of the channel to gate capacitance as a function of the
dimension parallel to the gate. The one-dimensional
current flow equation is given in (6) in terms of separate
drift and diffusion terms. The one-dimensional continuity
equation is given in (7), where we have ignored the
generation and recombination terms

.
= —Q”dx +wdx (6)
a  dQ

dz  dt’ @)

In (6) and (7), @ and x are the one-dimensional charge
per unit length and the mobility, respectively. These are
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the one-dimensional counterparts of the two-dimensional
quantities discussed in Section II. The precise way
in which the one-dimensional quantities are calculated
will be diseussed in Section III-B. V is the voltage along
the one-dimensional model and I is the current flowing
through it. The sign convention used makes both @ and p
negative. Substituting (6) into (7) gives

_R_ B W av dQ
a - g dz de " dz da
#Q on_z,i]
+7[”dx2+dxdz' ®)

We now consider Q, u, and V to be the sum of a time-in-
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in which » is the total electron velocity and is equal to the
product of the total electric field and the mobility as given
in (5). Substituting (9) and (10) into (8) and keeping
only the time-independent terms, (15) results:

= _ 8V, ~ 3V, o - aVo 30,
Qo,uo o022 +Qo oz o -+ i 9z oz
Qo | 9Qo ano]
— x| B 2+ 22— 0. (15
7[’“’ ox ' 9z dx (15)

Substituting (9)—(11) into (8) and keeping only the
linear time-dependent terms, we have, using (12) for
the relationship between ac charge and ac voltage and
(14) for the ac mobility, the following equation in V:

- aQo(av )(aV0>-1] 74 [- o v, v 8Q, ac
T C —_— —_— . e —_ e P - ¥ -
[Q"aE C v N PN ) oe T %m0 C T er ™
_ (ﬂ_-)(@)‘laz_@o+ 6_62}(%__)(6_70 kAl (‘92” 9fo (@)'1@ ?EC]QTZ
Yo PNoz) o2 T s \aE P Naz/) o " "\oEozr oc/\oz) oz ex loz
82170 670 Ol aVo oC 0C dfe oC A ] ~
oz 2V ¢ WVedho | o V000 0O SR 0. 16
+[ Ko ax? +C ox dx Ho ox dr THo ox? 76x x 1 (16)

dependent term and a time-dependent term using har-
monic time variation:

Q = Qo + er"’t (9)
V = Vo + Veint (10)
u = fo + mer. (11)

The bars over the steady-state values (those with “0”
subscripts) are intended to distinguish them from their
two-dimensional counterparts. Quantities with the tilde
over them are the magnitudes of the time-varying com-
ponents. The ac charge § is related to the ac voltage 14
through the channel to gate capacitance C as described by
the equation
Q=cv. (12)

C will be determined later by reference to the results of the
static solution.

The ac mobility can be found by expanding the mobility
as a function of the total electric field in a Taylor series
about the time average electric field:

u = f(By + Beisty = f(liy) + :—;

Fedot
E'=E-'o
= [ + pe®? (13)
where f(E) is the empirical expression due to Jaggi.
Recognizing that fe”* is equal to the second term in the
expansion in (13) where f is given by (5), we obtain

[ Jerpeny
”“[aE ”°]ax[ax] (14)

The solutions to (16), subject to boundary conditions
appropriate for yu and ya, or for yi2 and ¥, give the ac
voltage as a function of x in the one-dimensional model.
In order to find the common gate y parameters, the ac
current is also needed. By substituting (9)—(11) into (6)
and keeping only the linear ac terms, an expression can be
found relating the ac current to the ac voltage. Thus
knowing ¥ from (16), 7 can be found from (17):

- _ oV Womy 0V -8C
I=—-Q 9 V + ymC PP + vV P

()G 5o
t7\6E " PN/ oz os

The solution of (16) in conjunction with (17) gives the
ac current and voltage from which a complete set of
common gate short-circuit admittance parameters at a
given frequency can be calculated. The common source y

parameters can then be evaluated by way of a simple
transformation. '

B. Method of Bvaluating Coefficients of (16)

In order to solve (16) the values of Qo, 3V /92, o, and
C must be known as functions of z. The first three are the
one-dimensional analogs of the two-dimensional values of
charge, electric field, and mobility computed in the static
case. The capacitance € will be found, as shown later in
this section, using the difference of two static solutions.
There is no way to uniquely calculate the first three
quantities, so we have defined them in what appears to be

__.C—
% ox  °

(17)
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an intuitively reasonable way. This is described in the
following paragraphs.

In the region between the source contact and the edge
of the gate the current flow is rather uniform in the
epitaxial layer. Thus the two-dimensional steady-state
quantities Qo, 8V/dz, and uy have nearly constant values
there so that any averaging scheme will be satisfactory.
Similar comments apply near the drain contact. It is only
in the neighborhood of the gate that we must be careful
since it is this region that is responsible for the active
behavior of the device and since these parameters tend to
vary rapidly in this region.

Since we are interested in the ac behavior of the device
it seems most reasonable to be more concerned with those
values of @y, 9dVy/dx, and uy in the region where the
principal portion of the ac current flows. For this reason
we have chosen to average 8V,/92 and po in the y direction
using the ac current as a weighting factor in order to find
the one-dimensional analogs dV,/dx and @. (@, will be
determined later using the continuity equation (15) and
the known values of 3V,/dz and f.) In equation form this
implies

m—1

Iaci = Z ']acijhyij (18)
=2
v ) v
=t = ba Z Jacu' =t hyii (19)
ar |; act g dx |
1 m—1
fols = 7 2 Jaciifloihyij. (20)
act  j=32

In (18)—(20) the subscript ¢j refers to column ¢ (per-
pendicular to the gate) and row j (parallel to the gate) in
the grid used to find the static solution. The summations
are extended over the m rows of that same grid. A,; is a
grid spacing in the y direction at column j and row 3.
J acij 15 the ac current density in the limit of zero frequency
at column ¢ and row j. J,., is obtained by solving (1)—
(5) twice with boundary conditions on the gate that
differ by a few millivolts. By subtracting the current
densities obtained from the two static solutions, the ac
current densities are obtained as a function of z and y.
Since the principal portion of the ac current is found to
flow near the edge of the depletion region in the epitaxial
layer, the use of J..i; as the weighting function results in
average values that are most strongly influenced by that
region of the device. The mobility wuy; is obtained by
calculating the magnitude of the vector electric field at
t, j and using (5) to find the mobility. In this way, we
have included the effect of the y component of electric
field on the 2 component of the electron velocity.

6o remains to be found. Having the one-dimensional
Bo and 8V ,/dx it is possible to calculate §,. We know from
(7) that at dc the channel current is continuous. Equa-
tion (15) can be interpreted as a second-order linear
ordinary differential equation for @, involving #, and

dVo/dz. fio and 9V,/0x are known from the two-dimen-
sional solution by using the weighting functions given in
(18)—(20). We also know that in the ohmic region, at
the source and drain contacts, diffusion currents are not
important. The charge per unit length Q, at the source
and drain contacts is then given by

- Idc
souree — _ & /.o~ 21
Qo ] ﬁo(avﬂ/ax) source ( )
= Idc
rain = _ 5 .~ . 22
Gola B0 (8Vo/32) | 4raim =2

Equations (21) and (22) are then used as boundary con-
ditions for (15). The solution of (15) gives the static
charge per unit length in the one-dimensional model as a
function of z. Plots of gy, dV,/dx, and @, are shown in
Figs. 2, 3, and 4 and are for boundary conditions of Vpg =
500Vand Vegs =0 V.

Equation (16) also involves the capacitance per unit
length C between the channel and the gate. This is found
by obtaining a static solution with a boundary condition
of 0.0 V on the gate and a second static solution with a
boundary condition of —0.060 V on the gate. In both
cases the source has a potential of 0.0 V. By integrating
the mobile charge densities over a given column for both
solutions and subtracting the two values, the channel to
gate capacitance at column < is found to be

=Qil0—Qi’0.060

C: 0.060

F/m. (23)

In addition to the capacitance due to mobile charge in the
channel we must add an additional term that gives the
geometrical capacitance between the channel and ground.
This is a parallel-plate capacitance determined using
the substrate thickness as the plate spacing. In the region
of the depletion layer the geometrical capacitance term is
negligible, but in the region outside the depletion region
it is the total capacitance. A plot of the total capacitance
as a function of x is shown in Fig. 5 for Vps = 5.00 V.

C. Substrate Effect

The method used to find & and dV,/dz selects values
corresponding to the active region in the epitaxial layer
but does not include the effects of the substrate. As sug-
gested by Reiser [4], the substrate acts as a resistor
between source and drain.

This resistor is responsible for the large values of the
common gate ¥ and ¥, when compared to a p-n junction
FET with two gates and a line of symmetry parallel to the
gate through the center of the channel. In order to include
the substrate effects in our one-dimensional model, we
have explicitly included an admittance between the source
and drain of 2.5 X 10~ mho. This value was obtained
from two solutions of the static two-dimensional problem
with slightly different boundary conditions on the drain.
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Fig. 2. Mobility as a function of z for the one-dimensional model
with Vgs = 0.0 Vand VDS =5.0V.
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Fig. 3. Magnitude of the electric field as a function of z for the
one-dimensional model with Vgg = 0.0 V and Vpg = 5.0 V.
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Fig. 4. Mobile charge density as a function of = for the one-dimen-
sional mode} with Vgg = 0.0 Vand Vpg = 5.0 V.

D. Numerical Method Used to Solve (15) and (16)

Both (15) and (16) are linear second-order ordinary
differential equations with nonconstant coefficients sub-
jeet to fixed boundary conditions at two points. Because
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Fig. 5. Capacitance between the gate and channel as a function
of z for the one-dimensional model with Vgg = 0.0 V and Vpg =
50 V.

we know the values of the coefficients of (15) and (16)
only at discrete points and because of the complexity of
these equations, solutions were found using numerical
methods.

The derivatives in (15) and (16) are replaced by finite
difference approximations accurate to order h? resulting
in a set of linear equations of the form

Cpotw + Apap + Bpag = 0,

in which C,, A, and B, are constant, a, is the desired
variable value at a point, and ax and aw are its east and
west neighbors, respectively. The set of equations (24)
is a tridiagonal system, the solution to which may be
found using an efficient algorithm given by Keller [12].
Given the two-dimensional static solutions, a Fortran
IV program was written for an HW 635 machine that
will solve for the y parameters at 110 frequencies in 0.1-h
processor time. This requires the solution of (15) and
220 solutions of (16) with 110 values of the frequency and
2 sets of boundary conditions for each value of frequency.

Due to the-large gradients of @, dV,/dz, and C near
the drain end of the gate as shown in Figs. 2, 3, and 5, a
grid spacing smaller than that used in the static case was
required in order to solve (16). The solution to (16) was
checked at zero frequency by calculating the current at
each grid point. Because no displacement currents flow at
zero frequency, the current should be constant throughout
the channel. In order to obtain current continuity, the
grid spacing was reduced using a fourth-order Lagrange
interpolation for points that do not coincide with the
columns of the two-dimensional grid. In this fashion
current continuity was achieved.

2<p<m (29)
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E. Resulls of the AC Solution

The common gate admittance parameters described in
the analysis above were converted to common source y
parameters and are shown as functions of frequency in
Figs. 6-9 using Vs = 0.0 V and Vps = 5.0 V. The
maximum available gain (MAG) [or the maximum
stable gain (MSG)] and the stability factor computed
from these parameters are shown in Fig. 10.

In order to evaluate the validity of the model that has
been used, it is important to compare the calculated re-
sults with experimental measurements. The device whose
properties we are trying to calculate (Fig. 1) has dimen-
sions and impurity concentrations comparable with the
device reported by Wolf [17.

A comparison of his results and our own is complicated
by the presence of parasitic elements in the experimental
device. The experimental device had two relatively large
Schottky-barrier pads for the gate contacts that, in
effect, add a resistor on the order of 400 £ in parallel with
the gate [1]. This has the effect of increasing the real
part of yu and reducing the MAG of the experimental
device. Furthermore, as shown in Fig. 1, the theoretical
model assumes that heavily doped regions, as could be
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Fig. 6. 4115 in mhos as computed using the one-dimensional model

with Vgg = 0.0 V and Vpg = 5.0 V and the experimental results
of Wolf [1].
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Fig. 10. Maximum stable gain (MSG), maximum available gain
(MAG), and stability factor k& as computed using the one-dimen-
sional model with Vgs = 0.0 V, Vpg = 5.0 V, and the experi-
mental results of Wolf [1].

obtained using ion implantation, exist under the source
and drain contact metallizations to reduce the resistance
in series with these contacts. The experimental device,
however, had source and drain contacts directly on the
epitaxial material. Finally, it is very difficult to measure
accurately the physical dimensions and impurity con-
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centrations and thus another uncertainty is introduced
into the interpretation of the experimental data.

In order, therefore, to compare the experimental and
theoretical results, we have tried to take these factors into
account as well as we can. We have included in our eal-
culated y parameters, shown in Figs. 6-10, both a re-
sistance in series with the gate (Re) equal to one-third
of the gate metallization resistance and the geometrical
capacitance between source and gate (Ces) and between
the gate and drain (Cap) due to the contact metallizations
[137]. The values used for these quantities are Re¢ = 3.3 ©,
Ces = 0.045 pF, and Cep = 0.033 pF. A detailed dis-
tributed analysis shows that these approximations are
valid for frequency—gate length products of less than
2 X 10% Hz-m [8]. Since the experimental device re-
ported by Wolf [17 has, in effect, four 100-um-long gates
in parallel, we are justified in making direct comparisons
below 20 GHz.

It is apparent from Fig. 6 that the calculated value of
the real part of ¥y is slightly less than the experimental
value. A large portion of this discrepancy is believed due
to the gate pad parasitic in the experimental device.
Figs. 7 and 8 show good agreement between calculated
and measured values of y1» and ys1. The difference between
calculated and measured values of the real part of s
as shown in Fig. 9 is not nearly as significant as it appears
due to the small magnitude of #s. The error could be
attributed to a deviation from a step junction at the sub-
strate epitaxial layer boundary as assumed in our two-
dimensional static model.

The MSG, the MAG, and the stability factor k are
shown in Fig. 10 together with the experimental results
of Wolf [17]. Calculated results show that the stability
factor is less than 1 below 5 GHz so that the device is
potentially unstable in this region. We have, therefore,
shown the MSG in this region. The agreement between
experiment and calculation is apparent. The maximum
frequency of oscillation is reduced from 17.9 GHz to
14.7 GHz due to the parasitics associated with the 400-um-
long contact metallizations.

IV. SuMMARY

The short-circuit admittance parameters of a Schottky-
barrier field-effect transistor have been calculated and
compared with the experimental characteristics of a
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similar device. Taking into account the parasitics in the
experimental structure the agreement between experi-
ment and theory is good. It is believed that the model
developed to describe the high-frequency performance of
the device will provide the device designer with the means
to optimize this type of structure for use in microwave
circuits.
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